Project Report - NS Plants Book iOS App
Mitchell Keenan
Project Summary
My project is to create an iOS app which presents the data contained in and mimics the
functionality of the Nova Scotia Plants book. | was told that the goal for my project was not a
complete app, but to get a well documented start on it including database design, research
and project code, as the project is to be completed by a summer student.

The completed app should:

@ Be useful and accessible to both the layman and the biologist.

@ Provide all relevant information for each species, including photos and location maps.

@ Allow the easy identification of plants through the Dichotomous Key.

O At each level, all plants matching the current description should be viewable.

@ Providing the ability to easily find a plant species by various names, and possibly
location.

O This should deal with misspellings and missing diacritic marks reasonably well.
Be completely functional without an internet connection as often times it will be used in
remote locations where cell coverage and wifi are not available.
Have a searchable glossary of terms which is accessible in any state of the app.
Have an easily updatable database (web-portal) for data entry/modification which can
be pushed to the app during the build pipeline.

The completed app might:
@ Let users search for plants by text or gps location.
@ Support overlaying current gps location on the mini-maps shown for each species.
@® Have a social aspect where users can upload their own photos to a central server.
O These would be visible when the app had access to the internet.
O This is a large scope goal, as it involves the app accessing a secondary online
database, support for user accounts, moderators, and editing/removing pictures.
@® Allow the saving of certain plant species to a ‘favourites’ type list.

Work So Far

So far, the database design and implementation, as well as initial Ul/UX design has
been completed, including mockups of major screens. Investigations and planning for both the
app code and for the web-based DB front-end have been started in earnest. Some more
details of the completed work can be found on the second page.

Work To Come

Implementation of a simple layman-usable data entry system connected to the primary
database, a build pipeline which copies this database to the app, and as many features of the
core app as can be completed. Anything | don’t finish, Ul polish, and any extraneous feature
support are left to the next student taking over the project.


https://ojs.library.dal.ca/NSM/pages/view/Plants

Technologies and Research

The app is being developed in Apple’s swift language and uses an SQLite database. |
chose swift as it is the simplest/most convenient language for iOS development right now, |
was unfamiliar with swift and iOS development before the project so | have spent a fair amount
of time learning the basics. SQLite was chosen because it is a good lightweight database
engine for an embedded scenario and will support the data structures needed for the project
as well as the ability to have a central database with web-access unlike Apple’s.

| also chose to use Stephen Celis’ SQLite wrapper for swift. This provides a solid
type-safe way of interacting with our SQLite database in swift. It also ensures we are avoiding
any SQL compilation issues with our queries.

The data-entry portal will be written in PHP and allow a barebones access to the
database, including input forms for each taxon(species and their parents etc.) as well as each
step of the dichotomous key. The glossary should be able to be parsed from the book without
issue and as such shouldn’t need any data-entry.

Database Design

| spent a fair amount of time doing research in how the database for the app should be
built. The structure of taxonomic/hierarchical data, along with the types of access we require
present somewhat interesting problems in database design, which led to some seemingly odd
decisions when viewed without context. Let’s take a look at the entity relationship diagram:

is ancestor of

Common Name

Alternate Name

Description

Location Text

can be referenced by

Jo000Ns

Dichotomous Hode

® Map co-ordinate

¥ Map co-ordinate

bl

is ancestor of

i

You may notice some seemingly unnecessary/duplicate relations for taxon and
dichotomous node, however these make sense when you understand their uses. When


https://github.com/stephencelis/SQLite.swift

traversing the dichotomous key or viewing a non-species entry, the user must be able to view
the immediate children of the current entry as well as view all entries which fall below the
current one in the given hierarchy. To be done efficiently, these two tasks necessitate the ‘is
child of” and ‘is ancestor of relations. | encountered this problem during my database design
and eventually found a well thought-out presentation on the subject by Bill Karwin.

My SQLite database setup script can be found in Appendix A. Of note here is the
absence of SQLite virtual tables for full-text search. These are yet to be implemented, and
should, when combined with some regex tricks, provide the search capabilities required for the
app. If this still is not sufficient a list of common misspellings of the various names of the plants
could possibly be generated and compared against when searching.

UI/UX Design
The app will use the ‘tabbed interface’ template present in xcode and will adhere as
strictly as possible to current iOS design patterns. In Appendix B are some simple mockups
showing the major screens.
@® Note that the menu and it’s tab button have been removed in my current design.
@® Note that the sliding up and down of the glossary is no longer included in the design.
Users should be able to switch to this tab to look something up, then return to their
previous state in any other tab.


http://www.slideshare.net/billkarwin/models-for-hierarchical-data

Appendix A - SQLite Table Creation
PRAGMA foreign keys = true;
DROP TABLE IF EXISTS taxon;
CREATE TABLE taxon (

id INTEGER PRIMARY KEY AUTOINCREMENT,
unit_type INTEGER NOT NULL,

parent INTEGER REFERENCES taxon (id),
Sci_name TEXT DEFAULT '',

common name TEXT DEFAULT '',

alt name TEXT DEFAULT '',

authority TEXT DEFAULT '',
description TEXT DEFAULT '',

loc text TEXT DEFAULT '',
origin TEXT DEFAULT '',
status TEXT DEFAULT ''

) ;

DROP INDEX IF EXISTS taxon_parent_idx;

CREATE INDEX taxon parent idx ON taxon (parent);

DROP INDEX IF EXISTS taxon unit type idx;

CREATE INDEX taxon unit type idx ON taxon (unit type);

DROP TABLE IF EXISTS taxon closure;
CREATE TABLE taxon closure (
ancestor INTEGER NOT NULL REFERENCES taxon (id),
descendant INTEGER NOT NULL REFERENCES taxon (id),
PRIMARY KEY (ancestor, descendant)
) WITHOUT ROWID;
DROP INDEX IF EXISTS taxon ancestor idx;
CREATE INDEX taxon ancestor idx ON taxon closure (ancestor);
DROP INDEX IF EXISTS taxon descendant idx;
CREATE INDEX taxon descendant idx ON taxon closure (descendant);

DROP TABLE IF EXISTS location;
CREATE TABLE location (

id INTEGER PRIMARY KEY AUTOINCREMENT,
taxon INTEGER NOT NULL REFERENCES taxon (id),
X REAL NOT NULL,

4 REAL NOT NULL

) ;
DROP INDEX IF EXISTS location taxon idx;
CREATE INDEX location taxon idx ON location (taxon);



DROP TABLE IF EXISTS photo;

CREATE TABLE photo (
id INTEGER PRIMARY KEY AUTOINCREMENT,
taxon INTEGER NOT NULL REFERENCES taxon (id),
autor TEXT DEFAULT '',
photo BLOB NOT NULL

);

DROP INDEX IF EXISTS photo taxon idx;

CREATE INDEX photo taxon idx ON photo (taxon);

DROP TABLE IF EXISTS word;

CREATE TABLE word (
id INTEGER PRIMARY KEY AUTOINCREMENT,
word TEXT NOT NULL,
definition TEXT NOT NULL

) ;

DROP INDEX IF EXISTS word_idx;

CREATE INDEX word idx ON word (word);

DROP TABLE IF EXISTS key node;
CREATE TABLE key node (

id INTEGER PRIMARY KEY AUTOINCREMENT,
description TEXT NOT NULL,

parent INTEGER REFERENCES key node (id),
taxon INTEGER REFERENCES taxon (id)

) 7
DROP INDEX IF EXISTS key node parent idx;
CREATE INDEX key node parent idx ON key node (parent);

DROP TABLE IF EXISTS key node closure;

CREATE TABLE key node closure (
ancestor INTEGER NOT NULL REFERENCES key_node(id),
descendant INTEGER NOT NULL REFERENCES key node (id),
PRIMARY KEY (ancestor, descendant)

) WITHOUT ROWID;

DROP INDEX IF EXISTS key node ancestor idx;

CREATE INDEX key node ancestor idx ON key node closure (ancestor);

DROP INDEX IF EXISTS key node descendant idx;

CREATE INDEX key node descendant idx ON key node closure

(descendant) ;



Appendix B - Mockups
Dichotomous Key Navigation Mockup

1o

swiping to the right

Current Taxon

Lists current taxon name

also triggers a
back. itis like a

stack as you go
deeper in the

heirarchy

Fronds less than 2cm... -
Fronds greater than 2cm. " Detallls links to taxon
details page for the
) +—— current group, if there
More Details on current level > are any... otherwise it is
hidden
Plants in this group >

Verticallly scrollsif =1
needed

\

Plants in this group leads
to a search page with the
search bar hidden,
showing results.

»F e
Identify Glossary Search Menu

View Taxon Mockup

If multiple photos, this area is @ Sci Name

side-scrollable to see them.

Location map goes Here?

—_—
Could automatically
slideshow them.
a o o0
Mame: Lorem lpsum

Fields are only shown if
they are present

Common Mame:

Alternate Names:

Description:

Lorem lpsum

Lorem lpsum

Scrolls as needed

Lorem ipsum dolor sit amet, consectetur
adipizcing elit. Nulla quam velit, vulputate
eu pharetra nec, mattis ac neque. Duis
vulputate commodo lectus, ac blandit elit
tincidunt id. Sed rhoncus, tortor sed
eleifend fristique, tortor mauris molestie

Found In: Lorem lpsum

Status: Lorem lpsum
A s
|dentify Glossary Search Menu

Instead of or in addition
to the map shown above.
It could be inline under
found in. It could also be
linked to here and popup
over top when 'Found In’
is clicked.



Search Mockup

the time. The back
button is replaced with a
down button to slide the
glossary back down.

scrolls

Entry - Definition

Entry - Definition

Entry - Definition

Entry - Definition

Entry - Definition

Entry - Definition

Entry - Definition

Identify

©
Glossary

Search

T

Search is similar to glossary, but is Search Search bar is greyed out
a standalone page. - and filled with "Plants in
(Q Search Q) group A" when searching
Scientific. Common and Alternate from a taxon with the
names of any entries (species or Mame - Other NMames > "Plants in this group
otherwise] should be searchable. option”.
Fuzzy-find or some other utility Name - Other Names >
should deal with misspelled or
unproperly accented search
strings. Name - Other Names >
Entries should have the
Naine - Gther Names . name which mat-:hles the
Search should start scrolls search featured, with
showing all plants. other names shown.
Name - Other Mames >
Typing Apicture should be
narrows/filters the featured on the left
resultsin a live Name - Other Names »
manner.
@ Q b
Identify Glossary Search Menu
Glossary Mockup
Glossary will be slide up @ GIDSS&W Search should either be
and overlay whatever showing all words by
screen the user is on at (G‘ Search G) default or possibly any

words on the current
page which are in the
glossary.

Typing narrows/fiters the
results in a live manner.

Entries should have their
definitions on the option.
Depending on length or
other relevant info they
could have a link to
another screen - but this
is probably unnecessary



